
Graphene antidot lattices and barriers studied with the Dirac equation 
 

Søren J. Brun, Morten R. Thomsen and Thomas G. Pedersen 
 

Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst 
sjb@nano.aau.dk 

 
Abstract 
A band gap can be introduced in graphene by periodic nanoperforation, called a graphene antidot lattice 
(GAL). This effect has been demonstrated both theoretically [1, 2] and experimentally [3, 4]. Several 
methods have been used to produce GALs experimentally, including e-beam lithography [3], diblock 
copolymer templates [4], barrier-guided growth [5], nanosphere lithography [6] and nanoimprint 
lithography [7]. The antidots range in size between a few nanometers and several hundred nanometers, 
depending on the fabrication method.  
    Experimentally feasible structures are typically much larger than what traditional theoretical methods, 
such as tight-binding (TB) or density functional theory, can handle. We present novel methods based on 
the Dirac equation (DE), which enables us to calculate properties of very large structures. In fact, there 
is no additional computational cost for increasing the size of the unit cell. We use a spatially varying 
mass term to model GALs, where the mass term is non-zero in the antidot regions and vanishing 
elsewhere [2]. The mass term effectively makes electrons massive inside the antidots, which makes it 
unfavorable to enter them.  
    First, we set up a model that enables us to calculate electronic and optical properties of fully periodic 
GALs. We compare the results of our models with TB and show excellent agreement in the case of 
antidots with armchair edges. Figure 1 shows a comparison of bands gap calculated using TB and our 
Dirac model. Next, we look at electronic transport in graphene antidot barriers (GABs). A GAB can be 
made by introducing a 1D GAL strip in an otherwise pristine sheet of graphene. We solve this as a 
scattering problem, where a plane electron wave is incident on a GAB. Using this method, we can 
calculate the resulting wave function as well as the conductance spectrum of the barrier. An example of 
the electron probability density of a barrier is shown for different energies in Figure 2. The conductance 
is high at an energy of 0.15 eV, which results in a high probability density inside the barrier, whereas a 
low conductance at 0.30 eV results in a low probability density.  
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Figure 1. Comparison of band gaps calculated using TB and the DE. 

 
 

 
Figure 2. Electron probability density of a GAB with 4 hexagonal antidots. 


